
Save Files and Apps
Forever with Arweave
Introduction, Technology, Tools and Use Cases

TABLE OF CONTENTS

Example
applications
and services
storing data
permanently.

USE CASESTECHNOLOGYINTRODUCTION TOOLS

02 0301 04

Background of the
PermaWeb and

primary features

Dive into key
concepts,

economics and
architecture
of permanent

storage

Explore the
building

blocks in the
ecosystem

01

Background of the PermaWeb and primary features

Introduction

A little background

● Previously known as Archain, the Arweave team
has designed and developed the core protocol and
client side libraries.

● First technology “light” paper released in 2017,
with detailed “yellow” paper in 2018.

● Partnered with Techstars, Andreessen Horowitz,
Coinbase Ventures, Internet Watch Foundation and
others.

● 2 and a half year old mainnet with over 51 code
releases including hard and soft blockchain
forks.

● Also incubate new, community built applications.

https://www.arweave.org/files/arweave-lightpaper.pdf
https://www.arweave.org/yellow-paper.pdf

So what is
Arweave?

A storage platform as a
service, where data is
stored on an immutable
blockchain, owned by a
global community and

accessible over common web
browsers.

Arweave Layers

Storage Platform as a Service
Serverless web application architecture with an open HTTP API

● Suited for “write-once, read many” data sets

● You don’t have to operate it

● Can build client side or server apps that use it for a storage layer.

● Can host web portals and web applications on it.

Pay Once, Store Permanently
All uploads on the network incur a one time fee with no subscriptions.

● All fees are paid using the Arweave network token, “AR”.

● The fee is determined by code, based on modeling the infinite sum of the

declining storage costs over time.

● The fee includes an endowment paid to the node operators, which is used to

pay for the data over time.

● Data is free to read by default.

Decentralized and Censorship Resistant
Arweave is run by a decentralized network of nodes (or miners) that operate the
core open source Arweave node software.

● Nodes are distributed around the world, and can come and go at any time.

● Each node competes with one another to provide the fastest access to

storage.

● Small home nodes and large data centers both serve the PermaWeb.

● Each node chooses what to store, making censorship challenging.

Immutable, Time Stamped and Tamper Proof
Arweave is built on a public blockchain-like structure called a blockweave.

● All transactions and data are mined into blocks.

● All content stored is time stamped

● Each block is cryptographically sealed.

● Once the block is mined, the data is tamper proof and cannot be altered.

Supports complete data permanence, NOT network permanence.

So what is
Arweave...
REALLY?

A new type of cloud
storage that backs data
with sustainable and
perpetual endowments,
allowing users and

developers to truly store
data forever...

It is a collectively owned hard drive that
never forgets.

”Those who control the
present, control the
past and those who
control the past
control the future.”

— George Orwell, 1984

02

Dive into key concepts, economics and
architecture behind permanent storage

Technology

Utility Token Economics
Uploading data requires the user to pay a transaction fee which goes to paying the
node operators to encode the data into the system.

● The main unit is the AR, with sub-unit Winston

○ 1 AR = 1,000,000,000,000 winston

● 66 million tokens total

○ “Protocol enforced scarcity”

○ 55 million created at the “Genesis” block

○ 11 million being introduced gradually as block mining rewards

○ Rewards gradually decrease block after block (around 5 AR per block now)

First, find the cost to store data for
a single time period...

HDDprice / (HDDsz ∗ HDDmtbf) = PGBH

● HDDprice = Lowest available market price of buying a hard disk drive

● HDDsz = Capacity of this hard disk drive

● HDDmtbf = Mean time between hard drive failures (~7 years)

● PGBH = Price of storing 1GB of data on 1 hard disk drive for 1 hour

Next, model the infinite sum of declining
storage costs over time

Pstore = X∞ i=0 (Datasize ∗ PGBH[i])

● Pstore = Perpetual price of storage

● PGBH[i] = Cost of storing 1 GB for an hour at time i

● Datasize = Quantity of data to store

Then calculate the transaction price and
instant mining reward

T Xcost = T Xsize ∗ X∞ i=BH PGBB[i]

T Xreward = T Xcost ∗ Cfee

● TXsize = size of transaction in GB

● PGBB = Price of storing 1GB for 1

block at height I

● TXcost = Price to service this

transaction perpetually

● TXreward = Instant reward to miner

for processing and saving the data

● Cfee = constant defining instant

reward

Putting it all together

Total Transaction Fee

Transaction CostMiner Reward

Transaction costs go towards the Arweave Storage Endowment pool

Storage endowment tokens are released (via the protocol) to miners when the block
reward is not enough to sustain hosting the entire blockweave.

Price (in AR*) of 1GB of Data

* 1 AR = 2.44USD as of 11/16

Key Assumptions

1. The cost of commercially

available storage media continues

to decrease.

2. Data density/storage medium

reliability continues to

increase.

Both patterns have been exhibited in

past 50 years and have no signs of

stopping!

Examining an Arweave transaction

● Signature Data Segment (SDS): A concatenation of transaction fields.
● Signature: The RSA-SHA256 signature of SDS for the RSA key-pair using the Owner.
● ID: SHA-256 hash of the Signature.

● Data: Between 0 and 10,485,760 bytes of arbitrary data.
● Owner: The public key of the RSA key-pair signing this transaction.
● Quantity: Amount of Winston to send to another wallet.
● Target: The Wallet Address of the recipient
● Reward: The amount of Winston paid by Owner which goes to the Storage Endowment
● Tags: A list of key-value pairs, used for arbitrary metadata
● Tx Anchor: TX owner’s last processed transaction ID or the independent hash of one

of the last 50 blocks. Empty for the first transaction.

● Serialised Representation: The concatenation of all fields including signatures

Arweave Miners: The PermaWeb Backbone
Open source and run on commodity hardware

Store all data and network transactions

Can store as much (or little) of the blockweave
as desired.

Serve requests for data over the public internet (http)

Uses CPU power to compete against one another to “mine blocks” and
earn rewards

Node Minimum Hardware Requirements

Can be hosted in cloud, or on-premises

● Ubuntu/Linux OS

● 8vCPU

● 16GB RAM

● 10/100 MBit/s network with static, public IP address

● 1TB HDD (scaling optional)

Data Upload, Mining and Access Cycle

Users transact and upload data on the network

Stage 1: Proof of Access -> storage capacity

Stage 2: Proof of Work -> hashing power

Stage 3: Block Distribution -> network speed

Stage 4: Block Acceptance -> social rank

Users access data over standard web browser or app

Proof of Access - Incentivizing data storage
Every new block mined is linked to two prior blocks:

● The previous block in the ’chain’ (as with traditional blockchain protocols)
● And a block from the previous history of the blockchain (the ’Recall block’).

The recall block is selected based on a hash of the previous block and the previous
block’s height.

If this recall block is not found, the node cannot work to earn the next block reward.

Proof of Work - A digital computer race
After the Miner proves access to the Recall block, they perform “Proof of Work”.

● A complex math equation used to cryptographically sign mined blocks to ensure

no malicious transactions

● Specifically uses the RandomX is optimized for general-purpose CPUs.

● Uses random code execution together with several memory-hard techniques to

minimize specialized hardware (like GPU, FPGA or ASICs)

● Difficulty adjustment based on the hash power of the network, the larger the

network the more secure it is.

The Wildfire Metagame
Each node ranks its peers on two factors

1. How many blocks and transactions the peer
sends

2. How responsive it is

Nodes gossip to higher ranked peers first

Supports pro-social node behavior and
rationalizes bandwidth.

Slow, underperforming or “malicious” nodes don’t
get blocks or transactions, and won’t have their
blocks or transactions accepted!

Arweave Gateways
An Arweave Gateway is specialized node software used to serve PermaWeb content.

● Hashing is optional
● Same minimum hardware needs as full node software
● Can be customized to meet the needs of the content it is serving

Contains the full Arweave HTTP API

Allows HTTPS and friendly domains, eg https://arweave.net

Provides advanced indexing and querying services, currently using GraphQL

Supports Content Policies, which black lists unwanted transactions and data.

https://wlsu56an7wdkwp3nnpzxjnc6taqard3ftzauv2ommglgn2lznqva.arweave.net/suVO-A39hqs_bWvzdLRemCAIj2WeQUrpzGGWZul5bCo/

Decentralized Content Policies
Ensures the node operator only stores and serves what they are comfortable with.

Node operator defines content policy

If transaction data matches the Content Policy, it is removed from the node after
the block has been mined.

Let’s
zoom
out!

03

Explore the building blocks in the ecosystem

Tools

It starts with the Arweave HTTP API
Nodes have defined HTTP endpoints for interacting with transactions and related resources.

The API allows all of the operations needed to build complex applications

● Defined schemas for blocks and data transactions
● Wallet generation and operations
● Get block, network and node state
● Get transaction data, metadata, prices
● Submit transactions

Any existing http clients/libraries can be used to interface with the network, for example
Axios or Fetch for JavaScript, Guzzle for PHP, etc.

Discover more

https://github.com/axios/axios
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://github.com/guzzle/guzzle
https://docs.arweave.org/developers/server/http-api

Build Your Apps with Familiar Languages
Developers can jump into building client side apps quickly using open source tools and
libraries provided by the core Arweave team and community.

These wrappers and clients simplify common Arweave operations

Go

PHP

Scala (which can also be used with Java and C#)

JavaScript/TypeScript/NodeJS

Dart

https://github.com/Dev43/arweave-go
https://github.com/ArweaveTeam/arweave-php
https://github.com/toknapp/arweave4s
https://github.com/ArweaveTeam/arweave-js
https://github.com/CDDelta/arweave-dart

Tag and Find Your Data
App builders can tag their data with any
information architecture schema of their
choosing.

Tags are stored in the transaction header and
are indexed by GraphQL

GraphQL queries allowing fast retrieval of
transaction information, without pulling data
directly from the chain.

Tagging schemas can be shared between apps,
allowing seamless data sharing.

Arweave File System (ArFS) Schema Example

Digital Wallet
Like other blockchains, AR tokens are stored in a cryptocurrency wallet.

Wallet is comprised of a public key (also called an address) and a private key.

Control of the private key allows spending of funds.

Arweave uses the JSON Web Key (JWK) format (RFC 7517) with 4096 length RSA-PSS keys.

Key file can be exported to a plain text .JSON file

Currently only available via Chrome Extension

https://tools.ietf.org/html/rfc7517

Easily Deploy your existing Website
Package web pages and apps, including HTML, CSS
and Javascript using the Arweave-Deploy kit.

Supports single file, single package and directory
deployment.

● Deploy a single static file to reference in
other sites.

● Package external dependencies and assets into
a single, self-contained file.

● Automatically create a manifest file to
support deployment of an entire directory of
application assets.

Discover more

https://github.com/ArweaveTeam/docs.arweave.org-developers/blob/f45de7683c0a623e13e4155db32c6ce507c92d74/tools/arweave-deploy/html-packaging.md

Code Examples - Uploading Data

// Use an existing key or generate a new one

let key = await arweave.wallets.generate();

// Get some data and upload its buffer buffer

let data = fs.readFileSync('path/to/file.pdf')

let dataTransaction = await arweave.createTransaction({data: Buffer.from(data, 'utf8')}, key);

// Add metadata tags for easy querying and browser rendering

transaction.addTag('Content-Type', 'text/html');

// Sign the transaction with your private key

await arweave.transactions.sign(transaction, key);

// Upload the data in chunks

let uploader = await arweave.transactions.getUploader(transaction);

while (!uploader.isComplete) {

await uploader.uploadChunk();

}

Code Examples - Downloading Data

// Small transactions can have their data, tags and transaction metadata collected at once

const entireTransaction = arweave.transactions.get('hKMMPNh_emBf8v_at1tFzNYACisyMQNcKzeeE1QE9p8')

entireTransaction.get('tags').forEach(tag => {

let key = tag.get('name', {decode: true, string: true});

let value = tag.get('value', {decode: true, string: true});

console.log(`${key} : ${value}`);

});

// Larger transactions can have just the data and tags pulled

const dataTransaction = arweave.transactions.getData('hKMMPNh_emBf8v_at1tFzNYACisyMQNcKzeeE1QE9p8',

{decode: true, string: true}

)

Code Examples - Wallet to Wallet Transaction

// Use an existing key or generate a new one

let key = await arweave.wallets.generate();

// Send 10.5 AR to a wallet public address

let transaction = await arweave.createTransaction({target:'1seRanklLU_1VTGkEk7P0xAwMJfA7owA1JHW5KyZKlY',

quantity: arweave.ar.arToWinston('10.5')}, key);

// Check the status of the tx

arweave.transactions.getStatus(transaction.id).then(status => {

console.log(status); // 200

});

// Get recipient wallet balance

arweave.wallets.getBalance('1seRanklLU_1VTGkEk7P0xAwMJfA7owA1JHW5KyZKlY').then((balance) => {

let winston = balance;

let ar = arweave.ar.winstonToAr(balance);

console.log(ar); //10.5

});

04

Example applications and services storing data
permanently.

Use Cases

A reliable archive of record, since
data cannot be removed or altered
● Content Management Systems for records, digital assets,

documents or anything else requiring long term retention.

● Important files, music, videos, photos, code

● Other blockchain assets (NFTs, dApp data, block and

transaction data)

Proof of existence of a specific piece
of data at a given point in time
● News, blog and wiki publications

● Social networks

● Identity verification services

A growing
community

of founders
and apps

So what do they do?

Limestone - A decentralized
oracle providing pricing data
for financial protocols.

Community XYZ - a decentralized
autonomous governance platform
and community dashboard.

Gitopia - permanently
decentralize and store your
github code

ArGo - One click PermaWeb
deployment of your web app

Verto - A decentralized token
exchange

WeaveId - Easy and secure login
for Arweave apps

ArVerify - The “blue tick” for
the Permaweb.

https://limestone.finance/#/
https://community.xyz/home
https://gitopia.org
http://argoapp.live
https://verto.exchange/
http://weaveid.io
https://github.com/ArVerify

Introducing
ARDRIVE

A suite of file sync
apps that store your
most important data on

the PermaWeb

Node.js/Typescript Core back

end for the desktop app.

The Core can be accessed via

the CLI (available on NPM)

while the full Desktop app is

being developed in Electron

with React.

The Flutter web (and future

mobile) app uses the Arweave

Dart Standard library

https://github.com/ardriveapp/ardrive-core-js
https://github.com/ardriveapp/ardrive-cli
https://github.com/ardriveapp/ardrive-desktop/
https://github.com/ardriveapp/ardrive-web
https://github.com/CDDelta/arweave-dart

ArDrive
Web App (Beta)
Login with an Arweave Wallet

Upload, download and share
your files

End to end encryption of
your private data

Accessible on any device

Never worry about
subscriptions or your files
disappearing

Desktop and Mobile app on
their way!

https://app.ardrive.io

Do you have any questions? I would
love to answer them!

phil@ardrive.io

+201 739 0423

ardrive.io

THANKS!

@ardriveappphilip-mataras ardriveapps

https://ardrive.io
https://twitter.com/ardriveapp
https://www.linkedin.com/in/philip-mataras-83b5ba3/
https://github.com/ardriveapps

RESOURCES

● Arweave.org
● Arweave Yellow Paper
● Arweave Node Software
● Arweave Javascript
● Arweave Docs
● Arweave Dev Guide
● Community Chat

ARWEAVE REFERENCES AND TOOLS

● Community.xyz
● Arweave Block Explorer
● GraphQL Guide
● Simple Zapier Integration Examples
● Arweave Fee Calculator
● Test Arweave GraphQL Queries
● Chrome Store: Arweave Wallet

https://arweave.org
https://www.arweave.org/yellow-paper.pdf
https://github.com/ArweaveTeam/arweave
https://github.com/ArweaveTeam/arweave-js
https://docs.arweave.org/info/
https://docs.arweave.org/developers/
https://discord.gg/2pQTxBG2jB
https://community.xyz
https://viewblock.io/arweave
https://gql-guide.vercel.app/
https://arweave.medium.com/build-permaweb-apps-without-code-3-arweave-zapier-tools-you-can-make-in-less-than-5-minutes-e1837f1d3fea
https://fees.perma.online
https://arweave.net/graphql
https://chrome.google.com/webstore/detail/arweave/iplppiggblloelhoglpmkmbinggcaaoc?hl=en-GB

RESOURCES

● Blockchain Explained under 100 words
● Seagate, Digitization of the World
● Disk Price Over Time
● The Bitcoin Whitepaper
● Protocols Not Platforms
● Graph Query Language Specification
● RandomX Hashing Algorithm

OTHER REFERENCES

https://www2.deloitte.com/ch/en/pages/strategy-operations/articles/blockchain-explained.html
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://jcmit.net/diskprice.htm
https://bitcoin.org/bitcoin.pdf
https://knightcolumbia.org/content/protocols-not-platforms-a-technological-approach-to-free-speech
https://spec.graphql.org/June2018/
https://github.com/tevador/RandomX

